

PII: S0040-4039(97)10117-4

Nickel Mediated Conversion of Acyl Halides in Aldehydes

Corrado. Malanga*, Serena. Mannucci, Luciano. Lardicci

Dipartimento di Chimica e Chimica Industriale, via Risorgimento 35 56126 Pisa, Italy

Abstract: Aldehydes are obtained from acyl halides employing stoichiometric tri n.butyl tin hydride (TBTH) and catalytic nickeldiphenylphosphinoethane dichloride (NidppeCl₂), at room temperature.

© 1997 Elsevier Science Ltd.

The synthesis of aldehydes from acyl halides represents an important functional group interconversion (FGI) in organic chemistry. However, if we exclude the use of Rosenmund¹ or Brown² reagents, few efficient methods are available and those that there are tend to affect other functional groups present in the target molecule.

On the other hand, there are many exotic³ or expensive catalytic systems based on transition metal catalysts⁴. This paper reports the synthesis of aldehydes, starting from acyl halides and employing a catalytic amount of NidppeCl₂ with a stoichiometric amount of the commonly available TBTH as a hydride source.

In a typical run 0.01 mol of the TBTH in 20 ml of freshly distilled glyme or THF was slowly added to a solution containing 0.01 mol of the acyl chloride, 1.9 10⁻⁴ mol of NidppeCl₂ and, when specified, 0.01 mol of NaI as a co-catalyst in the same solvent. After 15 min. at room temperature the yellow solution was hydrolyzed with water and extracted with diethyl ether. After the usual workup and purification of the product by distillation or alternatively by precipitating the corrisponding 2,4-dinitrophenylhydrazone with the Brady reagent⁵, the product was obtained chemically pure (g.c., ¹H-NMR and ¹³C-NMR).

Table 1 reports the various reaction conditions adopted when employing, as a starting material, p.methylbenzaldehyde. In particular the catalyst, the solvent, the temperature and the addition of other ligands are taken into account.

Run	Reaction Conditions	СH ₃ —С—Н	€ CH ₃
1	Bu ₃ SnH, NidppeCl ₂ , THF, 25 °C	47%	53%
2	Bu ₃ SnH, NidppeCl ₂ , THF, -20 °C	0%	10%
3	Bu ₃ SnH. NidppeCl ₂ , THF, 50 °C	0%	90%
4	Bu ₃ SnH, Ni(CO) ₃ (PPh ₃) ₂ , THF, 25 °C	53%	43%
5	Bu ₃ SnH, NaI stechiom. NidppeCl ₂ , THF 25 °C	72%	28%
6	Bu ₃ SnH, NidppeCl ₂ , THF 25 °C, 2 atm. CO	0%	0%
7	Bu ₃ SnH, NidppeCl ₂ , PPh ₃ cat., THF 25 °C	0%	10%

Table 1. Reduction of p.Methylbenzoyl Chloride with TBTH and a Nickel Catalyst

When the reaction is carried out at a low temperature (Run 2, Table 1), the corresponding decarbonylated product (toluene) in low conversion is the sole compound obtained, but when the reaction is performed at 50 °C, the conversion in toluene rises to 90% (Run 3, Table 1). The best results are obtained when the reaction is carried out at 25 °C (Run 1, Table 1).

The use of Ni(PPh₃)₂(CO)₃ instead of the NidppeCl₂, to avoid the known CO extrusion⁶ as a side reaction, gave the p.methylbenzaldehyde in 53% yield only (Run 4, Table 1).

The best results are obtained by carring out the reaction in the presence of a stoichiometric amount of NaI in glyme instead of THF as the solvent. The use of this last solvent is necessary to prevent the THF ring opening reaction caused by the acyl iodide⁷ formed in solution.

Table 2 shows the results obtained by reacting different acyl chlorides.

The reaction does not seem to be applicable to sterically hindered substrates and the proposed reaction mechanism shows how the decarbonylated byproduct can be obtained through two different pathways, the first of which, at low (-20 °C) temperatures (with low yields) and the second at higher temperatures (50 °C), under thermodynamic conditions (Scheme 1).

Starting from this point of view, a stoichiometric amount of NaI is needed to convert the acyl halide into the more reactive iodide, which at room temperature, can rapidly give the nickel acyl hydride. The aldehyde formation, in these conditions, occurs faster than the carbonylation reaction (Kinetic conditions).

Table 2. Nickel Mediated Reduction of Acyl Halides in Aldehydes8.

Run	Acyl Halide	Aldehyde	Byproduct	Reaction Conditions
1		О Н 90%		Bu ₃ SnH, NidppeCl ₂ , THF, 25 ^o C
2	O CH₂≕CH(CH₂)₅C—CI	O	CH ₃ CH=CH(CH ₂) ₆ CH ₃ 21%(cis/trans)	Bu ₃ SnH, NidppeCl ₂ , THF, 25 °C
3	NO ₂ O C Cl	NO ₂ O H NO ₂ P0%		Bu ₃ SnH, NaI stoich. NidppeCl ₂ , glyime, 25 °C
4	о о а-с-(ан ₎ -с-а	O O H—C—(CH ₂) ₄ —C—H 90%		Bu ₃ SnH, NaI stoich. NidppeCl ₂ , glyme, 25 °C
5	°=cı	0 H 80%		Bu ₃ SnH, NidppeCl ₂ , THF, 25 ^o C
6	NO ₂ —C-CI	NO ₂ —С—Н		Bu ₃ SnH, NaI stoich., NidppeCl ₂ , glyme, 25 °C
7	O —CH ₂ —C—CI	О —СH ₂ —С—Н 44%	€ CH ₃	Bu ₃ SnH, NidppeCl ₂ , THF, 25 °C
8	СН3—С-СІ	СН ₃ —С—Н	€ CH ₃ 28%	Bu ₃ SnH, NaI stoich. NidppeCl ₂ , THF, 25 °C
9	CH3————————————————————————————————————	СН ₃ —С—Н	€ CH ₃	Bu ₃ SnH, NaI stoich. Ni(AsPPh ₃) ₂ Cl ₂ , THF, 25 °C

The decarbonylation reaction can be suppressed by employing Ni(AsPPh₃)₂Cl₂ as a catalyst (Run 9, Table 2). Substituting of the P-Ni bond (in the NidppeCl₂) with the As-Ni one [in the Ni(AsPPh₃)₂Cl₂] prevents the decarbonylation of the intermediates 2 and 3 (Scheme 1, L=AsPh₃) because a better stabilising overlap of σ^*_{Ni-As} orbital with the corresponding trans σ_{Ni-CO} orbital, take places.

Scheme 1

Further studies are in progress.

References and Notes

- 1. Mossettig E., Mozingo R., Org. Reactions, 1948, 4, 362.
- 2. Brown H.C., Subba Rao B.C., J.Am. Chem. Soc., 1958, 80, 5377.
- a) Babler J.H., Invergo B.J., Tetrahedron Lett., 1981, 11; b) Entwistle I.D., Boehm P., Johnstone R.A. W., Telfort R.P., J.Chem.Soc.Perkin Trans., 1980, 27; c) Leblanc J.C., Moise C., Tirouflet J., J.Organomet.Chem., 1985, 292, 225;
 d) Ballestri M., Chatgilialoglu C., Tetrahedron Lett., 1992, 1787; e) Chatgilialoglu C., Lucarini M., Tetrahedron Lett., 1995, 1299; f) Corriu R.J.P., Lanneau G.F., Perrot M., Tetrahedron Lett., 1988, 1271; g) Cole T.E., Pettit R., Tetrahedron Lett., 1977, 781; h) Fleet G.W.J., Fuller C.J., Harding P.J.C., Tetrahedron Lett., 1978, 1437; i) Sorrell T.N., Pearlman P., J.Org. Chem., 1980, 45, 3449.
- a) Dent S.P., Eaborn C., Pidcock A., J. Chem. Soc., Dalton, 1975, 2646; b) Citron J.D., J. Org. Chem., 1969, 34, 1977.
 c) Guibe F., Four P., Riviere H., J. Chem. Soc. Chem. Commun., 1980, 423; d) P. Four, F. Guibe, J. Org. Chem, 1981, 46, 4439
 e) L. Geng, X.Lu, J. Organomet. Chem., 1989, 376, 41; f) Courtis B., Dent S.P., Eaborn C., Pidcock A., J. Chem. Soc., Dalton, 1975, 2460.
- 5. Vogel's in Textbook of Pratical Organic Chemistry, J. Wiley Ed., N. Y. (1989).
- a) Tsuji J., Ohno K., Synthesis, 1969, 157; b) Wenkert E., Chianelli D., J. Chem. Soc. Chem. Commun., 1991, 626; c) Jolly P.W., Wilke G., in "The organic chemistry of nickel", Academic Press, N.Y., 1974.
- 7. a) Oku A., Harada T., Kita K., Tetrahedron Lett., 1982, 681, b) L.A. Aronica, Tesi di Laurea in Chimica, Pisa 1995.
- All compounds synthesized gave satisfactory ¹H, ¹³C NMR, IR and Mass spectral data as well as elemental analises.